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Abstract

The task of providing an optimal analysis of the state of the atmosphere requires the development of efficient com-

putational tools that facilitate an efficient integration of observational data into models. In a variational approach the

data assimilation problem is posed as a minimization problem, which requires the sensitivity (derivatives) of a cost func-

tional with respect to problem parameters. The direct decoupled method has been extensively applied for sensitivity

studies of air pollution. Adjoint sensitivity is a complementary approach which efficiently calculates the derivatives

of a functional with respect to a large number of parameters. In this paper, we discuss the mathematical foundations

of the adjoint sensitivity method applied to air pollution models, and present a complete set of computational tools for

performing three-dimensional adjoint sensitivity studies. Numerical examples show that three-dimensional adjoint

sensitivity analysis provides information on influence areas, which cannot be obtained solely by an inverse analysis

of the meteorological fields. Several illustrative data assimilation results in a twin experiments framework, as well as

the assimilation of a real data set are also presented.

� 2004 Published by Elsevier Inc.
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1. Introduction

Our ability to anticipate and manage changes in atmospheric pollutant concentrations relies on an

accurate representation of the chemical state of the atmosphere. As our fundamental understanding of
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atmospheric chemistry advances, novel computational tools are needed to integrate observational data and

models together to provide the best, physically consistent estimate of the evolving chemical state of the

atmosphere. Such an analysis state better defines the spatial and temporal fields of key chemical compo-

nents in relation to their sources and sinks. This information is critical in designing cost-effective emission

control strategies for improved air quality, for the interpretation of observational data such as those ob-
tained during intensive field campaigns, and to the execution of air-quality forecasting.

Kalman filter techniques [31] provide a stochastic approach to the data assimilation problem. The filter-

ing theory is described in Jazwinski [30] and the applicability to atmospheric modeling is presented in the

work of Daley [34]. A Kalman filter approach was used by Menard et al. [38] to assimilate methane obser-

vations into a stratospheric tracer model. The computational burden associated to the filtering process has

prevented the implementation of the full Kalman filter for large-scale transport-chemistry models. Ensem-

ble Kalman filter techniques [20,27] may be used to facilitate the practical implementation as shown by van

Loon et al. [48].
Variational methods (3D-Var, 4D-Var) provide an optimal control approach to the data assimilation

problem. Four-dimensional variational (4D-Var) data assimilation allows the optimal combination of three

sources of information: an a priori (background) estimate of the state of the atmosphere; knowledge about

the physical and chemical processes that govern the evolution of pollutant fields, as captured in the model

(CTM); and observations of some of the state variables. The optimal analysis state is obtained through a

minimization process to provide the best fit to the background estimate and to all observational data (space

and time distributed) available in the assimilation window. The use of adjoint modeling to evaluate the gra-

dient of the objective functional makes feasible the implementation of the 4D-Var data assimilation for
large-scale atmospheric models. The practical applicability of the 4D-Var typically requires an accurate

model representation of the atmospheric dynamics. Under the perfect model assumption and with valid

covariance matrices, the Hessian of the minimized cost function equals the inverse of the covariance matrix

of the analysis error. The optimality of the 4D-Var and its relationship with the Kalman filter is further

discussed in [35].

The direct decoupled method has been extensively used for sensitivity studies in three dimensional (3D)

atmospheric chemistry transport simulations [25,51,52]. Direct sensitivity analysis via (forward mode) auto-

matic differentiation was also employed in the context of photochemical transport models [5,26,29]. Adjoint
sensitivity is a complementary approach which efficiently calculates the derivatives of a functional with

respect to a large number of parameters.

In this paper, we present the mathematical theory of adjoint sensitivity analysis applied to three dimen-

sional atmospheric transport and chemistry models. We discuss the computational tools developed and use

them to build the adjoint of a comprehensive 3D air quality model. This discussion includes parallelization

and performance of 3D adjoints. The use of adjoints for sensitivity analysis and for data assimilation prob-

lems is illustrated using numerical simulations of air pollution in East Asia.

The paper is organized as follows. Section 2 gives an overview of previous work in chemical data assim-
ilation. In Section 3, we review the mathematical theory of adjoint sensitivity analysis applied to air quality

modeling. Specific algorithmic details of the adjoint of Stem-III chemical transport model are presented in

Section 4, while Section 5 discusses implementation aspects. Numerical results for the simulation of East

Asia are shown in Section 6. Conclusions and future research directions are given in Section 7.
2. Previous 4D-Var work

The implementation of the four-dimensional variational (4D-Var) data assimilation for large-scale atmo-

spheric models relies on the adjoint modeling to provide the gradient of the objective functional. Mathe-

matical foundations of the adjoint sensitivity for nonlinear dynamical systems are presented by Cacuci
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[3,4] and Marchuk et al. [36,37]. Early applications of the 4D-Var to chemical data assimilation were pre-

sented by Fisher and Lary [21] for a stratospheric photochemical box model with trajectories. A similar

model was used later by Khattatov et al. [32] to implement both the 4D-Var and a Kalman filter method.

A tropospheric gas-phase box model based on the chemical mechanism RADM2 was used by Elbern et al.

[16] to analyze the applicability of the 4D-Var approach to tropospheric chemical data assimilation. Menut
et al. [33] and Vautard et al. [47] use the adjoint approach for sensitivity studies in atmospheric chemistry

modeling.

In the past few years variational methods have been successfully used in data assimilation for compre-

hensive three-dimensional atmospheric chemistry models [14,19]. The work of Wang et al. [50] provides a

review of the adjoint methodology and data assimilation applications to atmospheric chemistry.

The inverse problem of data assimilation of tropospheric gas observations into a comprehensive

3-dimensional Eulerian CTM is researched by Elbern et al. [14]. The authors use the discrete parallel ad-

joint of the European Air Pollution Dispersion Model EURAD-CTM2 with RADM2 gas phase chemical
mechanism. An operator split approach, with Bott�s advection scheme and QSSA chemical solver is used.

The implementations aspects are discussed in [17]. The 4D-Var method is always able to retrieve the con-

centrations of observed species. It is concluded that the relative scaling of different species (which amounts

to a preconditioning of the minimization problem) is important and impacts the assimilation skills.

Elbern et al. [18] study the skill and limits of 4D-Var techniques to analyze the emission rates of precur-

sor constituents of ozone, with only ozone observations available. They conclude that NOx emissions could

be successfully analyzed for their strength, while for individual VOC emissions regularization techniques

are needed to account for known ratios of individual species.
Improvements in ozone prediction through the assimilation of observations are considered by Elbern

et al. [15]. Observations of chemical constituents were used from the EMEP database, and national, regio-

nal, and urban surface observations across Europe. Marked improvements after the assimilation of ozone

measurements are noticed.

Other techniques available for data assimilation have been successfully applied to atmospheric chemistry

models. For example, van Loon et al. [48] used an ensemble Kalman filter approach to assimilate ground

level ozone measurements and improve uncertainties in the emission rates of NOx, SOx, VOC and CO in

Europe.
3. Mathematical considerations

In this section a review of the mathematical aspects of chemical transport modeling and adjoint sensi-

tivity analysis is presented. Both the continuous and discrete adjoint approaches are described (see also

Wang et al. [50]).

3.1. Atmospheric chemistry and transport modeling

In what follows we denote by u the wind field vector, K the turbulent diffusivity tensor, q the air density

in moles/cm3, and ci the mole-fraction concentration of chemical species i (1 6 i 6 s). The density of this

species is qci moles/cm3. Let V dep
i be the deposition velocity of species i, Qi the rate of surface emissions,

and Ei the rate of elevated emissions for this species. The rate of chemical transformations fi depends on

absolute concentration values; the rate at which mole-fraction concentrations change is then fi(qc)/q.
Consider a domain X which covers a region of the atmosphere. Let n be the outward normal vector on

each point of the boundary oX. At each time moment the boundary of the domain is partitioned into

oX = CIN[COUT[CGR where CGR is the ground level portion of the boundary; CIN is the set of (lateral

or top) boundary points where u Æ n 6 0 and COUT the set where u Æ n > 0.
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The evolution of concentrations in time is described by the material balance equations
oci
ot

¼ �u � rci þ
1

q
r � qKrcið Þ þ 1

q
fiðqcÞ þ Ei; t0 6 t 6 T ; ð1aÞ

ciðt0; xÞ ¼ c0i ðxÞ; ð1bÞ

ciðt; xÞ ¼ cINi ðt; xÞ for x 2 CIN; ð1cÞ

K
oci
on

¼ 0 for x 2 COUT; ð1dÞ

K
oci
on

¼ V dep
i ci � Qi for x 2 CGR; for all 1 6 i 6 s: ð1eÞ
We refer to the system (1a)–(1e) as the forward (direct) model. To simplify the presentation, in this paper we

consider as parameters the initial state c0 of the model; it is known that this does not restrict the generality

of the formulation. The solution of the forward model c = c(t,c0) is uniquely determined once the model

parameters c0 are specified.

The direct model (1a)–(1e) is solved by a sequence ofN timesteps of lengthDt taken between t0 and tN = T.

At each time step one calculates the numerical approximation ck(x) � c(tk,x) at tk = t0 + kDt such that
ckþ1 ¼ N½tk ;tkþ1� � ck; cN ¼
YN�1

k¼0

N½tk ;tkþ1� � c0: ð2Þ
The numerical solution operator N is based on an operator splitting approach, where the transport steps

along each direction and the chemistry steps are taken successively. Operator splitting is standard practice
in computational air pollution modeling [24]. It allows the development of the forward, tangent linear, and

adjoint models with relative ease. Formally, if we denote by T the numerical solution operator for direc-

tional transport, and by C the solution operator for chemistry we have
N½t;tþDt� ¼ T
Dt=2
X �TDt=2

Y �TDt=2
Z � CDt �TDt=2

Z �TDt=2
Y �TDt=2

X : ð3Þ
The numerical errors introduced by splitting are an important component of model errors (see e.g., [46]). In

this paper, for the purpose of 4D-Var data assimilation, we assume the model errors to be small. Indeed, in

computational air pollution modeling the splitting errors oscillate with the diurnal cycle and do not grow

unboundedly for evolving time [24].

An infinitesimal perturbation dc0 in the parameters will result in perturbations dci(t) of the concentration
fields. These perturbations are solutions of the tangent linear model as discussed in Appendix A. In the

direct sensitivity analysis approach one solves the model (1a)–(1e) together with the tangent linear model

forward in time [51].

3.2. Continuous adjoint sensitivity analysis

Consider a scalar response functional defined in terms of the model solution c(t)
Jðc0Þ ¼
Z T

t0

Z
X
g cðt; xÞð Þdxdt: ð4Þ
The response depends implicitly on the parameters c0 via the dependence of c(t) on c0. The continuous ad-

joint model is defined as the adjoint of the tangent linear model as explained in Appendix A. By imposing

the Lagrange identity and after a careful integration by parts [10,36] one arrives at the following equations

that govern the evolution of the adjoint variables:
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oki
ot

¼ �r � ðukiÞ � r � qKr ki
q

� �
� F T ðqcÞk
� �

i
� /i; T P t P t0; ð5aÞ

kiðT ; xÞ ¼ kFi ðxÞ; ð5bÞ

kiðt; xÞ ¼ 0 for x 2 CIN; ð5cÞ

kiuþ qK
oðki=qÞ

on
¼ 0 for x 2 COUT; ð5dÞ

qK
oðki=qÞ

on
¼ V dep

i ki for x 2 CGR; for all 1 6 i 6 s; ð5eÞ
where
/iðt; xÞ ¼
ogðc1; . . . ; cnÞ

oci
ðt; xÞ; kFi ðxÞ ¼ 0; ð6Þ
and ki(t,x) are the adjoint variables associated with the concentrations ci(t,x), 1 6 i 6 s. In the above F = of/
oc is the Jacobian of the chemical rate function f. A typical sparsity structure for the Jacobians of atmo-

spheric chemistry is shown in Fig. 1. A detailed discussion of the chemical terms in the context of adjoint

modeling can be found in [9,42]. To obtain the ground boundary condition we use the fact that u Æ n = 0 at

ground level. We refer to (5a)–(5e) as the (continuous) adjoint system of the tangent linear model. The ad-

joint variables k(t,x) are also called influence functions [1] and represent the sensitivities of the response

functional to perturbations in the state variables c(t,x)
kiðt; xÞ ¼
oJ

ociðt; xÞ
: ð7Þ
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73 74

. Left panel: sparsity structure of the SAPRC-99 Jacobian (with fill-in). There are 920 nonzero entries out of 5476, i.e. the

y is about 17%. Right panel: sparsity structure of the SAPRC-99 Hessian (represented as one Hessian matrix per component).

are 1696 nonzero entries, i.e. the sparsity is about 0.4%.
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In the context of optimal control where the minimization of the functional (4) is required, the adjoint vari-

ables may be also interpreted as Lagrange multipliers by imposing the forward model equations as strong

constraints (see Appendix A).

The adjoint system (5a)–(5e) depends on the state of the forward model (i.e. on the concentration fields

c(t,x)) through the nonlinear chemical term F(qc) and possibly through the forcing term / for nonlinear
functionals. Note that the adjoint initial condition is posed at the final time T such that the forward model

must be first solved forward in time, the state c(x,t) saved for all t, then the adjoint model could be inte-

grated backwards in time from T down to t0.

In practice a hybrid approach is used. The forward model is solved using a numerical method, and the

numerical approximation of the state is saved periodically. These checkpoints are used in the definition of

the adjoint equations. The continuous adjoint equation (5a)–(5e) is a convection-diffusion-reaction equa-

tion (with linearized chemistry) and can be solved by any numerical method of choice. In particular an

operator splitting approach could be employed using the same numerical methods as for solving the direct
model
kk ¼ N½tkþ1;tk � � kkþ1; k0 ¼
YN�1

k¼0

N½tN�k ;tN�k�1� � kN : ð8Þ
For different cost functionals the forcing /i and the initial values kFi are chosen such that the adjoint vari-

ables are the sensitivities of the cost functional (7). We now discuss some examples relevant in
applications.

Example 1. In many practical situations the cost functional is not integral in time, but is evaluated at a set

of discrete time moments {tk}06 k6N, which usually contain the endpoints t0 and tN = T.
Jðc0Þ ¼
XN
k¼0

Z
X
gk cðtk; xÞ
� �

dx: ð9Þ
The forcing factor /i in the adjoint will contain delta functions at measurement times Dt�tk . An equivalent

formulation is to divide the integration interval into subintervals
Ik ¼ tk; tkþ1
� �

: ð10Þ
On each subinterval Ik the backward adjoint integration is carried out using
/i ¼ 0; kiðtkþ1 � �; xÞ ¼ kiðtkþ1 þ �; xÞ þ ogkþ1ðc1; . . . ; cnÞ
oci

ðtkþ1; xÞ; � ! 0: ð11Þ
In other words, the initial adjoint value in one interval is obtained from the final adjoint value in the next

time interval, plus a jump given by the derivative of the observation function. For the final interval

k = N � 1 we use the convention that ki(t
F + �,x) = 0.

Example 2. If the functional is defined using only solution values at selected points fx�jgj in the domain (for
example at measurement sites)
Jðc0Þ ¼
Z T

t0

X
j

gj cðt; x�j Þ
� �

dt; ð12Þ
then
/iðt; xÞ ¼
X
j

ogjðc1; . . . ; cnÞ
oci

ðt; x�j Þdx�x�j
; kFi ðxÞ ¼ 0: ð13Þ
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3.3. Discrete adjoint sensitivity analysis

In this approach the numerical discretization (2) of the (1a)–(1e) is considered to be the forward model.

This is a pragmatic view, as only the numerical model is in fact available for analysis. For brevity the state

of the discretized model will be denoted cki ½j�, where i is the species index, j is the space discretization index
and k the time discretization index. ck½j� will refer to the vector of all species at time level k and grid level j.

The cost functional is defined in terms of the discrete model state
Jðc0Þ ¼
XN
k¼0

X
j

g ck½j�
� �

; ð14Þ
and one wants the derivatives of this functional with respect to the discrete model parameters c0i ½j�.
A perturbation dc0 in the parameters c0 propagates in time according to the tangent linear discrete

equation
dckþ1 ¼ N0
½tk ;tkþ1� � dck; dcN ¼

YN�1

i¼0
N0

½tk ;tkþ1� � dc0; ð15Þ
where N0 is the tangent linear operator associated with the solution operator N. For an operator splitting

approach (3) N0 is built from the tangent linear transport and chemistry operators
N0
½t;tþDt� ¼ T

0Dt=2
X �T0Dt=2

Y �T0Dt=2
Z � C0Dt �T0Dt=2

Z �T0Dt=2
Y �T0Dt=2

X : ð16Þ
To each tangent linear operator corresponds an adjoint operator (denoted here with a star superscript). The
adjoint equation of (16) is
N0�
½tþDt;t� ¼ T

0�Dt=2
X �T0�Dt=2

Y �T0�Dt=2
Z � C0�Dt �T0�Dt=2

Z �T0�Dt=2
Y �T0�Dt=2

X ; ð17Þ
such that the resulting (discrete) adjoint model is
kk ¼ N0�
½tkþ1;tk � � k

kþ1 þ /k; k ¼ N � 1;N � 2; . . . 0; kN ½j� ¼ kF ðxjÞ: ð18Þ
The forcing function / and the initial values kN are chosen such that the adjoint variables are sensitivities of

the functional with respect to the state variables
kki ½j� ¼
oJðc0Þ
ocki ½j�

: ð19Þ
Example 3. For the functional (14)
/k
i ½j� ¼

og
oci

ck½j�
� �

; kNi ½j� ¼
og
oci

cN ½j�
� �

: ð20Þ
Example 4. For data assimilation applications, let us assume the availability of observations ck,obs of the

state variables ck. The cost functional measures the distance between model output and observations, as

well as the deviation of the solution from the background state.
Jðc0Þ ¼ 1

2
c0 � cb
� �T

B�1 c0 � cb
� �

þ 1

2

XN
k¼1

ck � ck;obs
� �T

R�1
k ck � ck;obs
� �

: ð21Þ
In the above the covariance matrix R�1 accounts for observation and representativeness errors. cb is the

background concentration (the initial guess in the assimilation procedure) and B the covariance matrix
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of the estimated background error. The covariance matrices account for error correlations between differ-

ent species as well as different locations. The discrete adjoint model (18) is then completely specified with
/k ¼ R�1
k ck � ck;obs
� �

for k P 1; kN ¼ R�1
N cN � cN ;obs
� �

;
oJðc0Þ
oc0

¼ k0 þ B�1 c0 � cb
� �

; ð22Þ
The last relation reflects the influence of the background term on the gradient.
3.4. Comments

The direct decoupled method has been extensively used for sensitivity studies in three dimensional (3D)

atmospheric chemistry transport simulations [12,13,25,51,52]. Direct sensitivity analysis via (forward mode)

automatic differentiation has also been employed in the context of photochemical transport models

[5,26,29]. The direct decoupled method works well for a small number of parameters. The adjoint method

is a complementary approach, which works efficiently for a small number of target functions (e.g. a single
functional) and a large number of parameters (e.g. the discrete initial state), as needed in the context of data

assimilation.

In the adjoint sensitivity analysis one distinguishes between the continuous and the discrete adjoint mod-

eling, see Sirkes and Tziperman [45]. Continuous adjoint sensitivity in practice is solved numerically, result-

ing in a discretization of the continuous adjoint equations. On the other hand the discrete adjoints are

computed from the adjoint of the numerical discretization. The operations of discretization and adjoint

usually do not commute, i.e. the discrete and the continuous adjoint approaches lead to different results.

The consistency of discrete adjoints with the continuous adjoint equation is a topic of ongoing research.
Sei and Symes [44] analyzed several simple discretization schemes for the one dimensional nonlinear advec-

tion equation and concluded that consistency of discrete adjoints is not automatic. Sirkes and Tziperman

[45] studied a one-dimensional convection-diffusion equation solved using central differences for both

advection and diffusion and leap-frog time stepping. They showed that the discrete adjoint leads to strong

oscillatory numerical artifacts. For time integration algorithms, Hager [22] gave order conditions for the

discrete adjoints of Runge–Kutta methods to be consistent discretizations of the continuous adjoint equa-

tions. The linear stability region of the discrete adjoint coincides with the stability region of the forward

method. For example, the Crank–Nicholson time discretization used in STEM (Section 4) is a second order
Runge–Kutta scheme; its adjoint is a second order discretization of the continuous adjoint equations.

The discrete adjoints are in principle preferred for (smooth) data assimilation problems since they

provide the exact derivative of the discrete function being minimized. They are also necessary in the com-

putation of total energy or Hessian singular vectors. A hybrid adjoint model approach (discrete adjoint for

the transport integration, continuous adjoint for the chemistry integration) was successfully applied to

4D-Var chemical data assimilation by Errera and Fonteyn [19]. For sensitivity studies using the adjoint

method one wants to approximate the sensitivities of the continuous model, i.e. in this case a continuous

adjoint approach may be preferable.
4. Numerical aspects of adjoint STEM-III

We now describe the construction of the adjoint of the comprehensive chemical transport model STEM-

III. The forward model is solved using an operator splitting approach. The resulting discrete adjoint sen-

sitivity model is also split. We discuss in detail the numerical techniques used for the solution of the forward

model and the resulting discrete adjoints. For simplicity we use linear finite difference discretizations of the
transport terms. Typical finite volume discretizations with flux limiting can be applied to the conservative
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form of the mass balance equations and result in nonlinear semidiscrete transport equations. The action of

the limiter is discontinuous with respect to the solution. This may lead to considerable theoretical and prac-

tical difficulties in the construction of the discrete adjoints, as well as in the understanding of their proper-

ties (see e.g., Homescu and Navon [23]). While we recognize that the study of discrete adjoints for flux

limited methods is an important area of ongoing research, the current focus on simple linear (with respect
to the solution) discretizations of the transport terms should be regarded as a first step toward robust data

assimilation systems for air quality.

4.1. Horizontal transport

Horizontal transport is solved using a directional x and y split approach. The basic numerical techniques

solve the one-dimensional transport equation
oc
ot

¼ �u
oc
ox

þ 1

q
o

ox
qK

oc
ox

� �
; cðt; xinÞ ¼ cinðtÞ; K

oc
ox

����
xout

¼ 0: ð23Þ
The horizontal advection term is discretized by the third order upwind finite difference formula [28]
� u
oc
ox

� �����
x¼xi

¼
ui �ci�2 þ 6ci�1 � 3ci � 2ciþ1ð Þ=ð6DxÞ; if ui P 0;

ui 2ci�1 þ 3ci � 6ciþ1 þ ciþ2ð Þ=ð6DxÞ; if ui < 0:

	
ð24Þ
The diffusion terms are discretized by the second order central differences
1

q
o

ox
qK

oc
ox

� �����
x¼xi

¼ ðqiþ1Kiþ1 þ qiKiÞðciþ1 � ciÞ � ðqiKi þ qi�1Ki�1Þðci � ci�1Þ
2qiDx2

: ð25Þ
For the inflow boundary the advection discretization drops to the first order upwind scheme, which makes

the order of consistency of the whole scheme quadratic for the interior points of the domain. If u1 P 0 then

x1 is an inflow boundary point; let cin be the corresponding boundary concentration (Dirichlet condition).

The discretization reads
dc1
dt

¼ �u1
c1 � cin
Dx

þ ðq2K2 þ q1K1Þðc2 � c1Þ � ð3q1K1 � q2K2Þðc1 � cinÞ
2q1Dx2

: ð26Þ
For the outflow boundary the advection discretization also drops to the first order upwind scheme. If

uN P 0 then xN is an outflow boundary point; we use the boundary condition of zero diffusive flux across

the outflow boundary. The discretization reads
dcN
dt

¼ �uN
cN � cN�1

Dx
þ�ðqNKN þ qN�1KN�1ÞðcN � cN�1Þ

2qNDx2
: ð27Þ
The space semi-discretization leads to the linear ordinary differential equation
dc
dt

¼ AðtÞcðtÞ þ BðtÞ; ð28Þ
where the matrix A(t) depends on the wind field, the diffusion tensor, and the air density but it does not

depend on the unknown concentrations (for the discretization schemes under consideration). The vector

B(t) represents the Dirichlet boundary conditions.

The forward system is advanced in time from tn to tn + 1 = tn + Dt using Crank–Nicholson
cnþ1 ¼ I � Dt
2
Aðtnþ1Þ

� ��1

I þ Dt
2
AðtnÞ

� �
cn þ Dt

BðtnÞ þ Bðtnþ1Þ
2


 �
: ð29Þ
The chosen discretization leads to pentadiagonal matrices and systems which can be solved very efficiently.



A. Sandu et al. / Journal of Computational Physics 204 (2005) 222–252 231
Eq. (29) represents the forward discrete model for horizontal transport. The corresponding adjoint sys-

tem is then advanced backwards in time using the discrete adjoint formulation
kn ¼ I þ Dt
2
ATðtnÞ

� �
I � Dt

2
ATðtnþ1Þ

� ��1

knþ1: ð30Þ
Eq. (30) is a consistent time discretization of the continuous adjoint equation. Note that for time dependent

coefficient matrix the continuous adjoint discretized with Crank–Nicholson
kn ¼ I � Dt
2
ATðtnÞ

� ��1

I þ Dt
2
ATðtnþ1Þ

� �
knþ1; ð31Þ
it is different than the discrete formula (30).

4.2. Vertical transport

The vertical advection term is discretized by the first order upwind finite difference formula
� w
oc
oz

� �����
z¼zi

¼
�wi ci � ci�1ð Þ=ðzi � zi�1Þ; if wi P 0;

�wi ciþ1 � cið Þ=ðziþ1 � ziÞ; if wi < 0:

	
ð32Þ
The vertical diffusion is discretized by the second order central differences. Note that the vertical grid is not

uniform. The top boundary condition is Dirichlet for inflow and Neumann for outflow (i.e. zero diffusive

flux through the top outflow boundary). This is similar to the horizontal advection case.
The ground level boundary condition considers the flow of material given by surface emission rates Q

and by deposition processes with deposition velocity V. The vertical wind speed at ground level is

w1 = 0. The ground boundary condition reads
�K
oc
oz

����
z¼ground

¼ Q� Vc; ð33Þ
where K is the vertical eddy diffusivity.

The ground level concentration is discretized in space as
c01 ¼
ðq2K2 þ q1K1Þðc2 � c1Þ

2q1ðz2 � z1ÞDz1
� Vc1 � Q

Dz1
; ð34Þ
where Dz1 is the height of the first layer.

This space semi-discretization leads to the linear ODE
c0ðtÞ ¼ AðtÞcðtÞ þ BðtÞeN þ QðtÞ
Dz1

e1; ð35Þ
where the entry A1,1 accounts now also for the deposition velocity; B accounts for the top boundary and Q

accounts for ground emissions. Here ej is the jth column of the identity matrix.

Using Crank–Nicholson time stepping for the concentrations and forward Euler timestepping for the

boundaries and the ground emissions the forward discrete model for vertical transport reads
cnþ1 ¼ I � Dt
2
Aðtnþ1Þ

� ��1

I þ Dt
2
AðtnÞ

� �
cn þ Dt BðtnÞeN þ QðtnÞ

Dz1
e1

� �
 �
: ð36Þ
Note that in practice the emission intensities and top boundary values are constant over discrete time inter-
vals (e.g. hourly) and the above forward Euler integration within such an interval is equivalent to Crank–

Nicholson. The corresponding discrete adjoint model is also of the form (30).
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From (30) and (36) one can easily obtain the cost functional derivatives with respect to other parameters.

For example the adjoint sensitivities with respect to emission rates can be calculated by the transposed

chain rule relation
ln ¼ oJ

oQðtnÞ ¼
ocnþ1

oQðtnÞ

� �T

� oJ

ocnþ1
¼ ocnþ1

oQðtnÞ

� �T

� knþ1 ¼ 1

Dz1
eT1 I � Dt

2
ATðtnþ1Þ

� ��1

knþ1: ð37Þ
The emission sensitivity ln is obtained at virtually no additional cost, since the vector [I � (Dt/2)AT]�1k is
already computed during the update of k in (30).

4.3. Chemistry

Atmospheric chemical kinetics result in stiff ODE equations that require special numerical integration

methods which are stable, preserve linear invariants (a.k.a. mass) and are computationally efficient. In [41],

we have shown that Rosenbrock methods are well suited for solving atmospheric chemistry problems. The

forward discrete chemical model in STEM is given by a Rosenbrock discretization of the chemical equations
Y i ¼ yn þ
Xi�1

j¼1

ai;jkj;

1

hc
� JðynÞ

� �
ki ¼ f Y ið Þ þ

Xi�1

j¼1

ci;j
h
kj; i ¼ 1; . . . ; s;

ynþ1 ¼ yn þ
Xs
j¼1

mjkj:

ð38Þ
In [8,42], we show that the corresponding discrete adjoint reads
1

hc
� JTðynÞ

� �
ui ¼ miknþ1 þ

Xs
j¼iþ1

aj;ivj þ
cj;i
h
uj

� �
;

vi ¼ JTðY iÞui; i ¼ s; s� 1; . . . ; 1;

kn ¼ knþ1 þ
Xs
i¼1

HðynÞ � kið ÞT � ui þ
Xs
i¼1

vi:

ð39Þ
Here J denotes the Jacobian and H (a 3-tensor) is the Hessian of the derivative function f. Yi are the stage

solution vectors computed by the forward method (38). The formulation can be easily extended to nonau-

tonomous systems.

For completeness we give the continuous chemical adjoint model, obtained by solving the adjoint chem-

ical equation with the Rosenbrock method (38)
Ki ¼ knþ1 þ
Xi�1

j¼1

ai;jkj; Y i ¼ yðtnþ1 � aihÞ

1

hc
� JTðynþ1Þ

� �
ki ¼ JTðY iÞ � Ki þ

Xi�1

j¼1

ci;j
h
kj; i ¼ 1; . . . ; s;

kn ¼ knþ1 þ
Xs
j¼1

mjkj:

ð40Þ
The numerical experiments reported here use the two stage, second order Rosenbrock method Ros-2 [49]

which is defined by the coefficients c ¼ 1þ
ffiffiffi
2

p
=2, m1 = 3/2, m2 = 1/2, a2,1 = 1, and c2,1 = �2.
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Other popular numerical integration methods for stiff systems are Runge–Kutta and backward differen-

tiation formulas (BDF). It can be shown [43] that the discrete adjoints of BDF schemes are in general (for

variable step sizes) inconsistent with the continuous adjoint equation. Runge–Kutta and Rosenbrock meth-

ods on the other hand are well suited for adjoint computations [22,43].

The implementation of numerical integrators for chemistry can be done automatically using the Kinetic
PreProcessor KPP software tools [11]. A related approach was taken in the early application of the 4D-Var

to chemical data assimilation by Fisher and Lary [21]. KPP was recently extended [9,42] to produce a rapid

and efficient implementation of the code for sensitivity analysis of chemical kinetic systems. KPP builds

Fortran77, Fortran90, C, or Matlab simulation code for chemical systems with chemical concentrations

changing in time according to the law of mass action kinetics. KPP generates the following building blocks:

1. Fun: the time derivative of concentrations;

2. Jac, Jac_SP: Jacobian of Fun in full or in sparse format;
3. KppDecomp: sparse LU decomposition for the Jacobian;

4. KppSolve, KppSolveTR: solve sparse system with the Jacobian matrix and its transpose;

5. Jac_SP_Vec, JacTR_SP_Vec: sparse Jacobian (transposed or not) times vector;

6. The stoichiometric matrix STOICM;

7. ReactantProd: vector of reaction rates;

8. JacReactantProd: the Jacobian of the above;

9. dFun_dRcoeff: derivatives of Fun with respect to reaction coefficients (in sparse format);

10. dJac_dRcoeff: derivatives of Jac with respect to reaction coefficients times user vector;
11. Hess: the Hessian of Fun; this 3-tensor is represented in sparse format;

12. Hess_Vec, HessTR_Vec: Hessian (or its transpose) times user vectors; same as the derivative of Jaco-

bian (transposed) vector product times vector.

In [9,42] we show how these KPP building blocks can be used to implement very efficiently code for

direct and adjoint sensitivity analysis of chemical systems.
5. Implementation aspects of adjoint STEM-III

The forward and adjoint models are parallelized and were run on a cluster of Linux workstations. Par-

allelization is based on dimensional splitting as supported by our library PAQMSG [39]. The library sup-

ports data types for structured grids, and implements routines for data decomposition, allocation of local

and global entities, data scattering, gathering, and shuffling. We use the horizontal–vertical data decompo-

sition presented in Fig. 2. With data in the horizontal slice format each processor can compute the horizon-

tal transport; then data is shuffled in vertical column format and each processor can compute radiation,
vertical transport, chemistry and aerosol processes in one column. For the horizontal transport the number

of processor employed is at most the number of layers. Typically, about 90% of the computational effort is

spent in radiation and chemistry computations, which use data in the column partitioned format. There are

many columns which are mapped onto the available processors such that each processor receives about an

equal amount of work. PAQMSG implements a static mapping scheme of columns (tasks) to processors

that ensures a very good load balancing. On a cluster of workstations all input and output is handled

by the master process (see Fig. 3); and all computations are done by the worker nodes.

For the adjoint we use a two-level checkpointing scheme. The level-2 checkpoints store the concentration
fields on the disk at every operator split step (i.e. at every 15 min for the current application). Note that the

linear transport scheme does not require any additional checkpointing storage. The amount of level-2

checkpoint data increases fivefold if a nonlinear transport scheme (e.g. using flux limiting) is used. The
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Fig. 2. The horizontal–vertical data decomposition scheme supported by PAQMSG.
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Fig. 3. The parallel adjoint STEM implements a distributed checkpointing scheme.
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level-1 checkpoints store the concentrations for each process inside the 15 min intervals; level-1 checkpoints

use memory buffers. For example one forward integration of each chemical box model for 15 min split time

interval requires a number of smaller time steps; these intermediate concentrations are stored in a tempo-
rary matrix and used during the backward integration of the adjoint model. Operator splitting and the

relative short split time intervals make it feasible to store the level-1 checkpoints in memory.

The gas phase chemical mechanism is SAPRC-99 [7] which considers the gas-phase atmospheric reac-

tions of volatile organic (VOCs) and nitrogen oxides (NOx) in urban and regional settings. The sparsity

structure of the Jacobian is shown in Fig. 1. The forward time integration is done with the Rosenbrock

numerical integrator Ros-2 [49]; the continuous adjoint model uses Ros-2 on the same sequence of steps

as the forward chemical integration. Both the forward and the adjoint models are implemented using KPP.

For our East Asia application discussed in the following section the total level-2 checkpoint information
stored is �162 MBytes of data for each hour of simulation; or �4 GBytes per 24 h of simulation. The level-

2 checkpoints of the parallel model are distributed as shown in Fig. 3, where each node stores local
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information on the local disk. This takes full advantage of the total storage capabilities of the system. It

also decreases the communication overhead when the parallel computation runs on a cluster of worksta-

tions since the gigabytes of data are not transmitted over the (relatively slow) connection. The distributed

checkpointing strategy is therefore essential for both efficiency and overall storage capacity. Note that for

the static domain decomposition implemented in PAQMSG the local entities (i.e. horizontal slices or sets of
columns of the concentration field) have the same size throughout the computation, which makes the imple-

mentation of the distributed checkpointing scheme very efficient. For a dynamic domain decomposition

strategy, on the other hand, the size of local entities change during the computation and the implementation

of distributed checkpointing becomes complicated.

The parallel performance of adjoint STEM-III is presented in Fig. 4. The East Asia test case is run on a

Beowulf cluster with 20 nodes (Pentium 4, 2 GHz, 1 GB RAM) and Gigabit ethernet connection; the one

hour forward and backward simulation corresponds to 0–1 GMT on March 1st, 2001. On 16 workers the

absolute cpu time for a forward run is about 2 min per hour of simulation; and the cpu time for a forward–
backward run is about 5 min per hour of simulation. The speedup curve (Fig. 4) is close to optimal; for 19

workers the speedup is 16, which translates into an efficiency of 85%.
6. Numerical results

The adjoint of the STEM chemical transport model can be used in sensitivity analysis studies and also

for chemical data assimilation. We now present these two important applications of the computational
tools developed. The analyzed problems are in support of the NASA TRAnsport and Chemical Evolution

over the Pacific (Trace-P) field experiment conducted in East Asia. The simulated region covers 7200 · 4800

km in East Asia, and the simulated interval is one month starting at 0 GMT on March 1st, 2001. The mete-

orological fields are given by a dynamic meteorological model (RAMS) [40], and the initial fields and

boundary conditions correspond to Trace-P data campaign. The grid has 90 · 60 · 18 points with a hori-

zontal resolution of 80 km · 80 km.

Details of the forward model simulation conditions and comparison with observations are presented in

Carmichael et al. [6]. The time series of calculated O3, NO2, HCHO, and CO concentration are presented in
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Fig. 4. Speedups (relative to a single worker process) for one hour of forward–backward integration with parallel adjoint STEM.
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Fig. 5. Cheju island (longitude �127� E, latitude �34� N) is a remote location, but under the influence of

emissions from China, Korea and Japan, depending on the outflow conditions. As shown in Fig. 5, CO and

O3 can reach values of �450 and �75 ppb, respectively. The time series show diurnal and synoptic scale

variability that reflects the complex nature of the Asian outflow.

6.1. Adjoint sensitivity analysis

For the sensitivity analysis 10 simulation cases were carried out to cover the whole month of the Trace-P

campaign period. They are listed in Table 1. The simulation interval for each case is three days. The first

case starts at 0:00 GMT on March 1st, 2001, the second starts at 0:00:00 GMT on March 4th, 2001, and so

forth. The response functional g = g(c(tF)) is the ground level ozone concentration at Cheju Island, at the

final time step of each case.

As shown in Section 3, sensitivities of the response functional g = g(c(tF)) with respect to the state vari-
ables (at each time instant) are the adjoint variables k(t), which can be obtained by integrating the adjoint

model backwards in time. The distributions of the adjoint variables in the three-dimensional computation

domain, which are available at any instant, provide the essential information for the sensitivity analysis.

For instance, isosurfaces of adjoint variables delineate ‘‘influence regions’’, i.e. areas where perturbations

in some concentrations will produce significant changes in the response functional (e.g. ozone at Cheju

Island at the final time).

Fig. 6 displays the influence areas of ozone at 24 h before the final time in case 2 (March 4–6) and case 9

(March 25–27), respectively. The influence region for case 9 is toward the South and close to the Cheju
Island, while that for case 2 is toward the Northwest. This difference reflects different meteorological

conditions, as indicated by the wind fields shown in Fig. 6.
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Table 1

Descriptions of simulation tests in the sensitivity analysis

Case Simulation time period Target function

1 March 1–3, 2001 Cheju O3 at 0 GMT on March 04, 2001

2 March 4–6, 2001 Cheju O3 at 0 GMT on March 07, 2001

3 March 7–9, 2001 Cheju O3 at 0 GMT on March 10, 2001

4 March 10–12, 2001 Cheju O3 at 0 GMT on March 13, 2001

5 March 13–15, 2001 Cheju O3 at 0 GMT on March 16, 2001

6 March 16–18, 2001 Cheju O3 at 0 GMT on March 19, 2001

7 March 19–21, 2001 Cheju O3 at 0 GMT on March 22, 2001

8 March 22–24, 2001 Cheju O3 at 0 GMT on March 25, 2001

9 March 25–27, 2001 Cheju O3 at 0 GMT on March 28, 2001

10 March 28–30, 2001 Cheju O3 at 0 GMT on March 30, 2001
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Three-dimensional back trajectories calculated every 3 h during the periods of March 4–6 and March

25–27 for Cheju are shown in Fig. 7. The back trajectories provide important insight into the adjoint var-

iable distributions. As shown in Fig. 6, for the March 4–6 case the flows are from the northwest and strong,

such that air masses 24 h before arriving at Cheju were over the Beijing area at altitude generally below 2

km. In contrast, during March 22–24 Cheju was under the influence of a high pressure system, and 24 h

before arriving at Cheju the flows were weak and from the south/south-west at altitude below �1 km. These

features are seen in the influence areas for ozone both in terms of location of the upwind areas, and the

proximity to Cheju (e.g., the influence area are much closer to Cheju for case 9 than for case 2).
The influence regions are difficult to predict based solely on meteorological fields, due to the influence of

turbulent diffusion and complicated chemical reactions. Because of the turbulent nature of the atmospheric

boundary layer, the influence region may quickly extend to a very large area, covering most of the compu-

tational domain, and even beyond that. The fact that influence regions cannot be simply predicted through

the meteorological fields is indicated by the differences in the influence regions of various chemical compo-

nents, even if they are all driven by the same wind field.
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Fig. 6. Influence function kO3
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target function is O3 at Cheju.



Fig. 7. Back trajectories starting at Cheju calculated every 3 h during the periods of March 4–6 (left) and March 22–26 (right).
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In order to illustrate this fact, and to identify the region where changes of a certain chemical component

will affect the target ozone observation most, adjoint variable magnitude are averaged for the period of

three days for each case
CiðxÞ ¼
1

N

XN�1

i¼0

jkiðx; tÞj: ð41Þ
Higher values of C form ‘‘cones of influence’’, i.e. regions where concentration changes affect the target

function most. Figs. 8 and 9 display these ‘‘cones of influence’’ for cases 2 and 9, respectively.

The ‘‘cones of influence’’ for case 2 show that the influence of ozone on itself is confined to regions within

a transport time of less than 1.5 days from Cheju, while the major influence areas for HCHO are over the

primary source regions around Beijing and �2 days removed from Cheju. The influence of NO2 on ozone is

far removed from Cheju, with the region of maximum influence location near the domain boundary and

J 3 days upwind of Cheju, at altitudes between 2 and 4 km. The trajectories shown in Fig. 7 help explain

the vertical distribution of the cones of influence. However the fact that the influence of NO2 is located far-
thest away reflects the fact that ozone is produced in the atmosphere via photochemical reactions involving

NO2. In the region of maximum O3 sensitivity to NO2, ozone production is NO2-limited and increases in

NO2 lead to increases in O3 levels. This process is fast, and the NO2 lifetime and transport distance are

short, so that the ozone is enhanced locally and then transported to Cheju. In addition, ozone production



Fig. 8. Cones of influence for March 4–6. Cheju Island marked with ‘‘+’’. From top to bottom: O3, NO2, and HCHO. Contours of

averaged C over levels below 5 km are shown on the left. On the right, maximum C in north-south direction are used to illustrate the

cones of influence.
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along the path from Beijing to Cheju is NMHC-limited [6] and the increases in NO2 result in a decrease in

ozone.

The situation for case 9 is very different, with the ‘‘cones of influence’’ located around Cheju, and of lim-

ited vertical extent. These features reflect the influence of the high pressure system.

Further insights into the information contained in the adjoint sensitivities are obtained from Figs. 10–13.
They illustrate, for each of the 10 cases analyzed, the ozone sensitivities at Cheju at the end of each simu-

lation period with respect to perturbations in surface layer O3, NO2, HCHO, and CO at any time within the

simulation window. In the figures, the solid lines represent the time series of the adjoint sensitivities for

perturbation to species concentration at Cheju, while the dots represent sensitivities due to perturbation

of surface concentration at every grid within the domain. The locations of the maximum value for each

of the 10 cases for each species are shown in Fig. 14.

The time series of adjoint variables provides insight into the relative impact of transport and chemistry.

For example, for a pure tracer under the influence of advection only (no diffusion, real or numerical), the
adjoint time series with respect to itself would be a delta function with value of unity at the end of each 3

day period and zero for all times prior. Under these conditions, the sensitivity of the tracer with respect to

all other species would be zero at all times.

The calculated ozone sensitivity with respect to itself shows the strong influence of transport for most of

the periods studied (e.g., cases 1–7, and 10). Here the ozone values are largest for the times closer to the last

time step. (Note that in order to produce the time series shown, the value of unity at the end of each period

is not plotted, but instead the value for the first time step of the next case is shown.)

For these cases the ozone time series are qualitatively similar, with adjoint sensitivity increasing after
�48 h, then becoming negative at �50 h, and then increasing, reaching a maximum positive value during
Fig. 10. Time series of kO3
, the adjoint sensitivities of surface ozone at Cheju with respect to perturbation of surface O3. The solid lines

represents the sensitivity to O3 concentration at Cheju, while the dots represent sensitivities to O3 perturbations at every grid within the

domain.



Fig. 11. Time series of kNO2
, the adjoint sensitivities of surface ozone at Cheju with respect to perturbation of surface NO2. The solid

lines represents the sensitivity to NO2 concentration at Cheju, while the dots represent sensitivities to NO2 perturbations at every grid

within the domain.
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the period 60–70 h. A positive kO3
implies a increase of surface ozone at Cheju at some time (e.g., hour 60)

will incur an increase in ozone at hour 72. This can happen only through diffusion or if the trajectories re-

cycle around Cheju. A negative sensitivity for O3 with respect to O3 implies that an increase in ozone at

some previous time leads to a decrease in ozone at Cheju at the end of the 3-day simulation. This can only

occur through chemical interactions under conditions when increasing ozone decreases future ozone pro-

duction via reduction in NO2 andor peroxyl radicals. This phenomena occurs for most periods around sun-
set of the 3rd day of the simulation. The behavior during the stagnant high pressure cases (cases 8 and 9,

hours 504–648) is different, and show a broad influence over the entire 3 day period. This reflects the recy-

cling of trajectories (as shown in Fig. 7) along with diffusion.

The surface behavior of the surrounding grid cells are qualitatively similar to that for for Cheju (dots vs

line) in terms of time period of influence, and show positive and negative interactions, but with maximum

values occurring at locations other than Cheju (This is discussed in more detail later).

The adjoint sensitivities of surface ozone at Cheju with respect to perturbation of surface NO2 are shown

in Fig. 11. Increasing NO2 can increase ozone production under NOx-limited chemical conditions, and can
decrease ozone under VOC-limited condition (by decreasing peroxyl radical concentrations). Both behav-

iors are shown. Under strong transport conditions the sensitivities with respect to NO2 are generally smaller

than those for ozone. However, under the high pressure condition the sensitivities with respect to NO2 are

larger than those for ozone. For case 8, the largest positive sensitivities occurred 2.5 days in advance.

The sensitivities of ozone with respect to HCHO perturbation are much smaller than those for ozone and

NO2, but show similar pattern to those for ozone. HCHO is both a primary and secondary species. The

sensitivities of ozone with respect to CO are extremely small, representing the weak interaction between

CO and ozone on these time scales. CO influences ozone via altering the OH concentration (›CO leads
to flOH).



Fig. 12. Time series of kHCHO, the adjoint sensitivities of surface ozone at Cheju with respect to perturbation of surface HCHO. The

solid lines represents the sensitivity to HCHO concentration at Cheju, while the dots represent sensitivities to HCHO perturbations at

every grid within the domain.

Fig. 13. Time series of kCO, the adjoint sensitivities of surface ozone at Cheju with respect to perturbation of surface CO. The solid

lines represents the sensitivity to CO concentration at Cheju, while the dots represent sensitivities to CO perturbations at every grid

within the domain.
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Fig. 14. Locations of the maximum sensitivity with respect to different species (color keyed) for all 10 cases (indicated by the case

number, with ‘‘A’’ representing case 10).
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The locations of the maximum sensitivities with respect to O3, NO2, HCHO, and CO for the individual

10 cases are shown in Fig. 14. Here the locations of the maximum (positive) sensitivity value anytime during

the 3-day period for each case are plotted. The locations of the maximum values for cases 1, 2, 4, 5, and 10

fall in the NW sector. Under the strong outflow conditions represented by these cases (cf., the trajectories,

for case 2 shown in Fig. 7), the location for all the maximum values occur at the same location, indicating

that locations are determined by the transport. The locations of the maximum values for cases 7 and 8 fall

in S, SE of Cheju (see Fig. 7 for trajectories). When the trajectories during a period vary greatly the loca-

tions of the maximum values differ by species (e.g., case 9).
The dependence of the ‘‘regions/cones of influence’’ on meteorological conditions imply that the com-

puted cones are at most as accurate as are the meteorological fields supplied to the simulation. In addition,

their accuracy is impacted by the numerical errors in the solutions of both the forward and the adjoint

models.

6.2. Data assimilation

The preliminary data assimilation tests were conducted in the twin experiments framework. The descrip-
tions are as follows:

	 Reference run: The reference model run starts at t0 = 0:00 GMT on March 1st, with the reference initial

concentrations of all chemical species.

	 Observations and assimilation window: We consider a 6 h assimilation window. The observations are con-

centrations of selected species Y obs
0 (here O3 and NO2) as computed by the reference run. Observations

are provided on all grid points at the end of the assimilation window t0 + 6h.

	 Parameters: The control parameters are the initial concentrations of selected species Yc(t
0) (here O3 or

NO2).
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	 Initial guess: The initial values of the control species are increased by 20%. This provides the ‘‘back-

ground’’ values Yb, which are used as initial conditions for the initial guess run.

	 Cost functional: Measures the distance between the model predictions Y0 and the values Y obs
0 of the

selected observed species, as well as the deviation of control variables from the background state.

� � 1 X 1 X
Fig. 15

decrea
J Y cðt0Þ ¼
2b

gridpoints

½Y cðt0Þ � Y b�2 þ
2r

gridpoints

½Y 0ðtF Þ � Y obs
0 ðtF Þ�2: ð42Þ
The background and measurement covariance matrices are diagonal,
B ¼ diagfbg; R ¼ diagfrg; ð43Þ

with b = 1000 and r = 1, which means we trust the measurements considerably more than the background

state.

	 Optimization algorithm: Quasi-Newton limited memory L-BFGS [2]. The optimization proceeds until the

cost functional is reduced to 0.001 of its initial value, or the number of forward–backward model inte-

grations exceeds 15.

To simplify the data assimilation tests, we only choose the initial O3 (or NO2) concentrations as control
variables while the initial concentrations of other species are kept at their reference values. This gives some-

what idealized test conditions. The control variables (initial concentrations of O3, NO2) are perturbed by

20% from their reference values. The observed variables are O3 and/or NO2. We found that assimilating

O3 observations alone brings little change to initial concentrations of other species, while assimilating some

other species does bring up adjustments of several initial concentrations.

The performance of the data assimilation procedure is measured by the RMS difference between the ref-

erence values of the control variables and their values recovered by data assimilation. The RMS errors

shown in Fig. 15 are defined as
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RMS error ¼ max
gridpoints
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c
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� �2 X
gridpoints

1

 !�1
vuut : ð44Þ
The decrease in the RMS error of control variable values versus the number of model runs during the opti-

mization procedure is shown in Fig. 15.
For O3 control variables the optimization procedure produces a rapid decrease in the RMS error. Most

of the information comes from O3 observations; additional NO2 observations do not seem to bring notice-

able benefits. This may be due to the lack of scaling in our formulation of the cost functional. These results

imply that ozone initial conditions is recoverable through data assimilation. For comparison we include the

optimization of the cost functional without the background term (corresponding to an infinite background

covariance). As expected the cost function decreases further.

For NO2 control variables the decrease in the cost function, and in the RMS error, is not as pronounced

as that for O3. Again most of the information comes form O3 measurements, with additional NO2 measure-
ments contributing very little to the optimization process. After about 10 model runs the RMS errors tend

to stagnate, even if the cost functional continues to decrease. Perturbing the initial NO2 concentration by

20% results in only a small change in the final (observed) O3 concentration. This may be explained by the

fact that NO2 levels are driven mostly by emissions, and less by the initial conditions, which affects the

observability of the initial NO2 field through ozone measurements. The results indicate that further algo-

rithmic developments are needed for assimilating NO2. In particular a better scaling of the cost function,

through a rigorous definition of the covariance matrices, is necessary.

It is interesting to note that the assimilated results in the central region are significantly better than the
other regions. The decrease of the RMS error calculated in the central 50 · 20 grid points is plotted in Fig.

16 along with that of the RMS error calculated in the whole domain. This is probably because the concen-

trations in the central small region predicted at the final time step are more dependent on the initial con-

dition than the boundary conditions, such as the effect of the ground emissions of some species. When

pinpointing the assimilation result to specific locations, we also found very different features. For instance,

Fig. 17 shows the progress of the recoveries of the O3 concentrations at Cheju and Shanghai. When the
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assimilation test stops after the cost functional has been reduced by more than three orders of magnitude,

the O3 prediction at Shanghai matches the exact value very well, which is anticipated. Unfortunately, the

simulated O3 concentration at Cheju is not as good, with the relative error only reduced from initial 20% to

6% at the end. This might suggest that the successful assimilation would require dense observation sites
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Fig. 18. Data assimilation results for O3, P3-B observations on March 7, 2001. The initial ozone concentrations at all gridpoints are

the control variables. The assimilation interval is 12 h. One notices the excellent agreement of the model predictions with the

observations for the run after analysis.
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close to the interest area rather than an uniformly distributed network, as our synthetic observation sites

indicated. Work on this subject is obviously needed in the near future.

We conclude with results from the assimilation of a real data set. The O3 observations collected during

the Trace-P campaign by the P3-B flight on March 7, 2001, are shown in Fig. 18 (squares). This data set is

assimilated in the window 0–12 GMT of March 7. The initial ozone concentrations at all gridpoints are the
control variables. The initial model predictions (Fig. 18, solid line) do not reproduce well the observations.

After analysis the model predictions (dashed line) are in excellent agreement with the observations.
7. Conclusions and future work

In this paper, we discuss the adjoint sensitivity analysis of three dimensional atmospheric transport and

chemistry models. Adjoint modeling proves to be a powerful computational tool for sensitivity studies as
well as for integrating observational data into the model in a four-dimensional variational (4D-Var) data

assimilation procedure.

An overview of the mathematical theory of adjoint modeling applied to convection-diffusion-reaction

models of atmospheric pollutants is given. The continuous and discrete adjoint model approaches are out-

lined, and formulations of the forcing terms for different cost functionals are discussed.

As an example of the discrete approach we discuss in detail the construction of the adjoint model of the

comprehensive 3D chemical transport model STEM. Algorithmic details include the construction of ad-

joints for finite difference transport numerical schemes and for Rosenbrock integrators for stiff chemical
kinetics. Implementation aspects including the parallelization, the efficient distributed checkpointing

scheme, and the performance of the parallel adjoint code are also presented.

The use of adjoints for sensitivity analysis and for data assimilation problems is illustrated using numer-

ical simulations of air pollution in East Asia. The analyzed problems are in support of the large Trace-P

experiment conducted in East Asia in March 2001.

For sensitivity studies the target function is the ozone concentration at Cheju Island. Isosurfaces of ad-

joint variables delineate ‘‘influence regions’’, i.e. areas where perturbations in some concentrations will pro-

duce significant changes in this response functional. Results show that the influence regions are most
affected by the meteorological fields, however they are difficult to predict from the meteorological informa-

tion alone due to the influence of turbulent diffusion and complicated chemical reactions. The influence

areas intersecting domain boundaries indicate that uncertainties in boundary values impact the accuracy

of ozone predictions at Cheju Island. The cones of influence, defined by isosurfaces of the time integral

of adjoint sensitivities, are useful to analyze the complex ozone production and transport processes.

The first set of data assimilation experiments are conducted in the twin experiment framework. We con-

sider several scenarios, with the control variables being O3 or NO2, and the observed variables being O3

and/or NO2. The performance of the data assimilation procedure is measured by two indicators, the cost
function value and the RMS error of control variables. The initial O3 control variable can be recovered

nicely from measurements through 4D-Var data assimilation. The recovery of the initial NO2 concentra-

tions is more difficult, presumably due to the fact that NO2 levels are driven mostly by emissions.

Preliminary results from the assimilation of real data from the Trace-P campaign are presented. The

excellent agreement of model predictions with observations after analysis constitutes another validation

of the computational tools discussed in the paper.

Future work will focus on continuing the development of algorithmic and software infrastructure for

adjoint modeling of comprehensive chemical transport models; and on using this computational infrastruc-
ture to run more complex tests and to assimilate real measurements data. The fundamental goal of this

work is to enable the assimilation of chemical data available from ground, airplane, and satellite measure-

ments into the models.
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Appendix A. The tangent linear model and its adjoint

An infinitesimal perturbation dc0 in the initial state will induce a variation dJ in the response functional

(4). To first order approximation,
dJ ¼
Z T

t0
dt
Z
X
dcðt; nÞ � og

oc
cðt; nÞð Þdn; ðA:1Þ
where the perturbations dc(t,x) in the concentration fields are obtained by solving the tangent linear model
odci
ot

¼ �u � rdci þ
1

q
r � qKrdcið Þ þ F i;�ðqcÞdc; t0 6 t 6 T ; ðA:2aÞ

dciðt0; xÞ ¼ dc0i ðxÞ; ðA:2bÞ

dciðt; xÞ ¼ dcINi ðt; xÞ ¼ 0 for x 2 CIN; ðA:2cÞ

K
odci
on

¼ 0 for x 2 COUT; ðA:2dÞ

K
odci
on

¼ V dep
i dci for x 2 CGR: ðA:2eÞ
In the above F is the Jacobian of the function f, and Fi,* denotes its ith row. We refer to (A.2a)–(A.2e) as the

tangent linear model associated with the forward model (1a)–(1e). In a compact notation
odc
ot

¼ LðcðtÞÞdc; t0 6 t 6 T ; ðA:3Þ
with the initial condition (A.2b). The domainDðLÞ of the linearized convection-diffusion-reaction operator

LðcÞ is taken as the subspace [C([t0,T],C2(X))]s\ [C1([t0,T],L2(X))]s of the Hilbert space [L2((t0,T) · X)]s con-
strained by the boundary conditions (A.2c)–(A.2e). In the direct sensitivity analysis approach one solves the

model (1a)–(1e) together with the tangent linear model (A.2a)–(A.2e) forward in time (for each parameter an

additional sensitivity equation must be solved). The equations (A.2a)–(A.2e) are of convection-diffusion-

reaction type (with linearized chemistry) and in practice are solved by the same numerical method as the for-
ward model (2) and (3); computational savings are possible by reusing the same matrix factorizations [51].

The adjoint method may be used to provide an explicit dependence of the response functional to vari-

ations in the parameters. The adjoint operator
L�ðcÞk ¼ r � ðukÞ þ r � qKr k
q

� �
þ F T ðqcÞk
is determined from the Lagrange identity
Z T

t0
dt
Z
X
LðcÞdc � kdx ¼

Z T

t0
dt
Z
X
dc �L�ðcÞkdx; 8dc 2 DðLÞ; 8k 2 DðL�Þ: ðA:4Þ
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The domain DðL�Þ of the adjoint operator is the subspace of [C([t0,T],C2(X))]s\ [C1([t0,T],L2(X))]s con-
strained by the boundary conditions (5c)–(5e). Next, the inner product of (A.3) with k(t,x) is taken in

[L2((t0,T) · X)]s to obtain
Z T

t0
dt
Z
X

odc
ot

� kdx ¼
Z T

t0
dt
Z
X
LðcðtÞÞdc � kdx: ðA:5Þ
After integrating by parts and using (A.4) it follows that
Z
X
dcðT Þ � kðT Þdx�

Z
X
dcðt0Þ � kðt0Þdx ¼

Z T

t0
dt
Z
X

ok
ot

þL�ðcÞk
� �

� dc:
If kðt; xÞ 2 DðL�Þ is defined as the solution of the adjoint problem
ok
ot

¼ �L�ðcÞk� og
oc

cðt; xÞð Þ; ðA:6aÞ

kðT Þ ¼ 0; ðA:6bÞ

then
dJ ¼
Z
X
dc0 � kðt0Þdx;
such that k(t0,x) represents the sensitivity to initial conditions.
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